Synthetic Stock Data: how to "correctly" simulate
Posted: Thu Jun 27, 2013 9:33 am
Synthetic Stock Data: how to "correctly" simulate volatility
Now take a look at a chart of the volatility of daily returns for the same rolling periods on a synthetic data series created using GBM and (in the GBM calculations) a fixed, static figure for volatility. Take a look also at the chart of the closing prices from which the volatility was calculated. Neither the volatility chart nor the stock price chart look much like those derived from real prices. Too static, not enough jumps and changes as volatility flows with market conditions.
See below:
randomClosefixedstddev
fixedstddev
The next two charts show volatility and closing prices for another synthetic data series, this time using randomly altered figures for target volatility. Note how both bear a much greater similarity to the volatility charts for real price series shown in the above posts, reflecting day to day “normalityâ€
Now take a look at a chart of the volatility of daily returns for the same rolling periods on a synthetic data series created using GBM and (in the GBM calculations) a fixed, static figure for volatility. Take a look also at the chart of the closing prices from which the volatility was calculated. Neither the volatility chart nor the stock price chart look much like those derived from real prices. Too static, not enough jumps and changes as volatility flows with market conditions.
See below:
randomClosefixedstddev
fixedstddev
The next two charts show volatility and closing prices for another synthetic data series, this time using randomly altered figures for target volatility. Note how both bear a much greater similarity to the volatility charts for real price series shown in the above posts, reflecting day to day “normalityâ€